/// muthafucka you deserve to die
#pragma GCC optimize("O3")
#pragma GCC optimize ("unroll-loops")
#pragma GCC target("avx,avx2,fma")
#include "bits/stdc++.h"
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
using namespace std;
using namespace __gnu_pbds;
#define pb push_back
#define F first
#define S second
#define f(i, a, b) for(int i = a; i < b; i++)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define sz(x) (int)(x).size()
#define mp(x, y) make_pair(x,y)
#define popCnt(x) (__builtin_popcountll(x))
//#define int ll
using ll = long long;
using ii = pair<int, int>;
using ull = unsigned long long;
const int N = 3e5 + 5, LG = 19, MOD = (119 << 23) + 1, MOD2 = 1e9 + 7;
const long double PI = acos(-1);
const long double EPS = 1e-7;
mt19937_64 mrand(chrono::steady_clock::now().time_since_epoch().count());
const int dx[] = {-1, 1, -1, 1};
const int dy[] = {1, -1, -1, 1};
int n, m;
int l[N], r[N];
ll F[N], iF[N];
ll fast(ll b, ll e) {
ll res = 1;
for (; e; e >>= 1, b = b * b % MOD)
if (e & 1)
res = res * b % MOD;
return res;
}
void init() {
F[0] = 1;
f(i, 1, N)F[i] = F[i - 1] * i % MOD;
iF[N - 1] = fast(F[N - 1], MOD - 2);
for (int i = N - 2; i >= 0; --i)
iF[i] = iF[i + 1] * (i + 1) % MOD;
}
int C(int n, int k) {
if (k > n || k < 0)
return 0;
return iF[k] * F[n] % MOD * iF[n - k] % MOD;
}
vector<int> adj[N];
vector<int> special;
bool have[44];
int cnt[N];
vector<ii> add[N];
vector<ii> del[N];
bool vis[N];
int dp[22], nxt[22];
void bt(int index, int lftRange, int rightRange, int vecIndex, int cnt = 0) {
if (lftRange > rightRange)
return;
if (index == special.size()) {
if (cnt) {
add[lftRange].push_back({cnt, vecIndex});
del[rightRange].push_back({cnt, vecIndex});
}
return;
}
bt(index + 1, lftRange, rightRange, vecIndex, cnt);
bool ok = true;
for (auto x: adj[special[index]])
ok &= (!have[x]);
if (ok) {
have[special[index]] = true;
bt(index + 1, max(lftRange, l[special[index]]), min(rightRange, r[special[index]]), vecIndex, cnt + 1);
have[special[index]] = false;
}
}
void dfs(int node) {
special.push_back(node);
vis[node] = true;
for (auto x: adj[node])
if (!vis[x]) {
dfs(x);
}
}
int vals[22][22];
void doWork() {
init();
cin >> n >> m;
f(i, 1, n + 1) {
cin >> l[i] >> r[i];
}
set<int> st;
f(i, 0, m) {
int u, v;
cin >> u >> v;
adj[u].pb(v);
adj[v].pb(u);
st.insert(u);
st.insert(v);
}
int tot = 0;
for (auto x: st)
if (!vis[x]) {
special.clear();
dfs(x);
bt(0, 0, n, tot++);
}
f(i, 1, n + 1)if (!st.count(i))cnt[l[i]] += 1, cnt[r[i] + 1] -= 1;
int ans = 0;
f(i, 1, n + 1) {
cnt[i] += cnt[i - 1];
for (auto [x, y]: add[i])vals[y][x] += 1;
::memset(dp, 0, sizeof dp);
dp[0] = 1;
for (int j = 0; j < tot; j++) {
memset(nxt, 0, sizeof nxt);
for (int k = 1; k <= 20; k++)
if (vals[j][k]) {
for (int x = 0; x + k <= 20; x++) {
nxt[x + k] = (nxt[x + k] + 1ll * dp[x] * vals[j][k]) % MOD;
}
}
f(k, 0, 21) {
if ((dp[k] += nxt[k]) >= MOD)
dp[k] -= MOD;
}
}
for (int j = 0; j <= min(20, i); j++)
if (dp[j]) {
ans = (ans + 1ll * dp[j] * C(cnt[i], i - j)) % MOD;
}
for (auto [x, y]: del[i])vals[y][x] -= 1;
}
cout << ans << '\n';
}
int32_t main() {
#ifdef ONLINE_JUDGE
ios_base::sync_with_stdio(0);
cin.tie(0);
#endif // ONLINE_JUDGE
init();
int t = 1;
// cin >> t;
while (t--) {
doWork();
}
return 0;
}
236A - Boy or Girl | 271A - Beautiful Year |
520B - Two Buttons | 231A - Team |
479C - Exams | 1030A - In Search of an Easy Problem |
158A - Next Round | 71A - Way Too Long Words |
160A - Twins | 1A - Theatre Square |
1614B - Divan and a New Project | 791A - Bear and Big Brother |
1452A - Robot Program | 344A - Magnets |
96A - Football | 702B - Powers of Two |
1036A - Function Height | 443A - Anton and Letters |
1478B - Nezzar and Lucky Number | 228A - Is your horseshoe on the other hoof |
122A - Lucky Division | 1611C - Polycarp Recovers the Permutation |
432A - Choosing Teams | 758A - Holiday Of Equality |
1650C - Weight of the System of Nested Segments | 1097A - Gennady and a Card Game |
248A - Cupboards | 1641A - Great Sequence |
1537A - Arithmetic Array | 1370A - Maximum GCD |